$$\frac{\operatorname{Recall from last lecture}:}{\left\langle \exp\left(-S_{\mathbb{Z}}(q)\right), \bigotimes_{i=1}^{\infty} \exp\left(-S_{D_{i}}(q)\right)\right\rangle = \exp\left(-S_{\mathbb{Z}}(q)\right)}{\operatorname{Yet us specify to the case m=1 for simplicity}}$$
For a smooth map $f: \Sigma \longrightarrow G_{\mathbb{Z}}$ define the "left action" $l(f)$ on Z by
$$l(f) \exp\left(-S_{\mathbb{Z}}(q)\right) = \exp\left(-S_{\mathbb{Z}}(f)\right) \cdot \exp\left(-S_{\mathbb{Z}}(q)\right)$$

$$= \exp\left(-S_{\mathbb{Z}}(fq) - T_{\mathbb{Z}}(fq)\right)$$
Similarly, we define "right action" by
$$r(f) \exp\left(-S_{\mathbb{Z}}(q)\right) = \exp\left(-S_{\mathbb{Z}}(q)\right) \cdot \exp\left(-S_{\mathbb{Z}}(fq)\right)$$

$$\frac{\operatorname{Proposition 2:}}{\operatorname{Yet } q: \Sigma \longrightarrow G_{\mathbb{C}} be a smooth map and let}$$

$$h: \Sigma \longrightarrow G_{\mathbb{C}} be a smooth map which is$$

$$hol: an int of \Sigma. Then$$

$$l(h) \exp\left(-S_{\mathbb{Z}}(q)\right) = \exp\left(-S_{\mathbb{Z}}(hq)\right)$$
and for anti-hol. $h^{*}: \Sigma \longrightarrow G_{\mathbb{C}} we have$

$$r(h^{*}) \exp\left(-S_{\mathbb{Z}}(q)\right) = \exp\left(-S_{\mathbb{Z}}(qh^{*})\right)$$

Infinitesimal action of Map(Z,Gc): Set for non-negative integer n and Xeoj $X_{n,\mathcal{E}}(z) = \mathcal{C}^{\Sigma X z^{n}}, \quad \mathcal{E} \in \mathbb{D}, \quad \mathcal{E} \in \mathbb{R}$ and for negative n $X_{n,\varepsilon}(z) = e^{\varepsilon X \overline{z}^{-n}}, z \in \mathbb{D}, z \in \mathbb{R}$ Infinitesimal action of Xn, E by p is defined by $X_n S = \frac{\partial}{\partial s} \Big|_{s=0} \rho(X_{n,s}) s, s \in \Gamma(Z)$ -> The map defined by X&t" -> Xn gives representation of a ffine Lie algebra $\hat{o}_{\mathcal{J}}$ on space of sections $T(\mathcal{Z})$: Lemma! The operators Xm and Xm, m, n e Z, satisfy the relation $[X_m, Y_n] = [X, Y]_{m+n} + mk \, \delta_{m+n,0} \langle X, Y \rangle$ Proof: Put f= Xmis, and g= Ynisz for siszer

In the case min > 0 or min < 0 the relation $[X_{m}, Y_{n}] = [X, Y]_{m+n}$ follows from $\mathcal{T}_{D}(f,g) = \mathcal{T}_{D}(g,f) = 0.$ Let us suppose m>0 and n=0. Then $T_D(f,g) = 0$, but $\lim_{\xi_1,\xi_2\to 0} \frac{1}{\xi_1\xi_2} T_D(g,f) = \frac{\kappa}{2\sqrt{1+1}} \int T_r(mz^{m-1} \chi dz \Lambda nz^{-m-1} \chi dz)$ $= m K \langle \chi, \rangle \rangle$ for m=-n and zero otherwise. \square Define operators $\overline{X}_n s = \frac{d}{ds} \Big|_{\varepsilon=0} p^*(X_{n,\varepsilon}) s$, set (2) Then Xoth > Xn also defines a repr. of ôj $\longrightarrow [\overline{X}_{m}, \overline{Y}_{n}] = [\overline{X}, \overline{Y}]_{m+n} + m K S_{m+n} \otimes \overline{X} \rightarrow \overline{Y}$ <u>but</u>: $[X_m, \overline{Y_n}] = 0$

Definition:
A smooth section
$$\varphi \in T(X)$$
 is called "primary"
if and only if
 $X_n \varphi = \overline{X_n} \varphi = 0 \quad \forall \quad X \in Q, \quad n > 0$
One can show that the space of sections
of X contains a subspace in the
representation $\bigoplus H_X \otimes H_X^*$
 $O \in X \in K$
Physics interpretation:
For a closed Riemann surface Σ consider
 $\int \exp(-S_\Sigma(\varphi)) \mathcal{D}f$
 $f: \Sigma \to G_E$
Decompose $\widetilde{\Sigma} = \Sigma \cup \bigoplus D_i$. Take $m=1$.
 $\exp(-S_\Sigma(f)) \in \pi^{-1}(f \circ c)$ where $\pi: X \to LG$
This section will be an element of $\bigoplus H_X \otimes H_X^*$
Then the path integral over $\widetilde{\Sigma}$ will be
obtained through the pairing $X \times X^{-1} \to C$

Consider the Riemann sphere
$$CP'$$
 with
homogeneous coordinates $[5_0:5_1] \rightarrow z=5_0/5_1$
identify $CP' \equiv CU\{\infty\}$
Zet $p_{1,1} - \cdot, p_n \in CP'$ be a distinct points
introduce coordinates $z_j = z(p_j)$ at p_j .
 $\rightarrow locally$ $t_j = z - z_j$; for $p_j \neq \infty$
for $p_j = \infty$ take $t_j = \frac{1}{z}$

$$\rightarrow \text{ Zauvent expansion of elements of} \\ g(p_1, \dots, p_n) \text{ at } p_j \text{ with respect to } f_j \text{ gives linear map} \\ & \quad T_j : g(p_1, \dots, p_n) \rightarrow g \otimes C(Cf_j)) \\ \text{for each } j, 1 \leq j \leq n. \text{ Injection of } g \otimes C(Cf_j)) \\ \text{to affine Zie algebra } g_j = g \otimes C(Cf_j)) \otimes C \text{ then} \\ gives: \\ & \quad G(p_1, \dots, p_n) \rightarrow g_j \text{ .} \\ \text{Fix level } K. \text{ Associate } p_j \rightarrow H_{\lambda_j} \\ (\text{integrable highest weight module}) \\ \hline Definition: \\ \text{The diagonal action } \Delta \text{ of } g(p_1, \dots, p_n) \text{ and} \\ H_{\lambda_j} \otimes \dots \otimes H_{\lambda_n} \text{ is given by} \\ & \quad \Delta(CP)(T_1 \otimes \dots \otimes T_n) \\ = \sum_{j=1}^{n} T_1 \otimes \dots \otimes C_j (Q) T_j \otimes \dots \otimes T_n \\ \text{for } Q \in g(p_1, \dots, p_n) \text{ and } T_j \in H_{\lambda_j}, 1 \leq j \leq n. \\ \end{cases}$$

Lemma: The above action $\Delta: q(p_1, \dots, p_n) \longrightarrow End(H_{h, \otimes} \dots \otimes H_{h_n})$ is representation of the Lie algebra of (pi,..., p.) Proof: For f e Mp,,--, pn denote by fp; the Laurent series in t; at p. The 2-cocycle w introduced in §1, Proposition 1, satisfies: $\sum \omega (X \otimes f_{P_{1}}, Y \otimes g_{P_{1}}) = 0$ for any Xof, Yog(p,,..., pn) since $\sum_{j=1}^{r_1} \omega \left(X \otimes f_{P_j}, Y \otimes g_{P_j} \right) = \langle X, Y \rangle \sum_{j=1}^{r_2} \operatorname{Res}_{t_j=0}^{r_j} f_{\mathcal{T}} \right)$ and sum of residues of a meromorphic 1-form is zero. $\longrightarrow \bigtriangleup([X, Y] \otimes fg) = [\bigtriangleup(X \otimes f), \bigtriangleup(Y \otimes g)]$